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Symmetric Matrix Completion Problem (SMCP)

• Positive semidefinite (PSD) rank-𝑟 matrix 𝑀 ∈ ℝ𝑛×𝑛

• 𝑀 = 𝑋𝑋𝑇, where 𝑋 ∈ ℝ𝑛×𝑟

• Sampling set Ω with cardinality 𝑠

• Ω is symmetric!

find 𝑀𝑖𝑗 for 𝑖, 𝑗 ∈ Ωc

given 𝑟𝑎𝑛𝑘 𝑀 ≤ 𝑟

and 𝑀𝑖𝑗 for 𝑖, 𝑗 ∈ Ω

1 ? ? 1

? ? 6 ?

? 6 ? 2

1 ? 2 1

𝑛 = 4, 𝑟 = 1, 𝑠 = 8
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Applications

• Maximum likelihood estimation (MLE) 
of covariance matrices in Gaussian 
graphical models [1]

• Density matrix completion in quantum 
state tomography [2]

• Low-rank approximation of correlation 
matrices in finance and risk 
management [3]

Schäfer, Juliane, and Korbinian Strimmer. "Learning Large‐Scale Graphical 

Gaussian Models from Genomic Data." In AIP Conference Proceedings, vol. 

776, no. 1, pp. 263-276. American Institute of Physics, 2005.
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Rectangular Matrix Completion as SMCP

• Rectangular (non-symmetric) matrix completion
• 𝐴 ∈ ℝ𝑛1×𝑛2 has rank 𝑟

• 𝐴 = 𝑌𝑍𝑇, where 𝑌 ∈ ℝ𝑛1×𝑟 , 𝑍 ∈ ℝ𝑛2×𝑟

• ෩Ω = ǁ𝑠

• Semidefinite lifting

• 𝑋 =
𝑌
𝑍

∈ ℝ𝑛×𝑟, where 𝑛 = 𝑛1 + 𝑛2

• 𝑀 = 𝑋𝑋𝑇 = 𝑌𝑌𝑇 𝑌𝑍𝑇

𝑍𝑌𝑇 𝑍𝑍𝑇
∈ ℝ𝑛×𝑛

• 𝑀 also has rank 𝑟

𝑛1 = 4, 𝑛2 = 3

𝑟 = 1, ǁ𝑠 = 5

𝑛 = 7
𝑟 = 1, 𝑠 = 10
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Existing Approaches

Approach Problem formulation Existing algorithms

Linearly-constrained 
nuclear norm minimization

min
𝑍∈ℝ𝑛×𝑛

𝑍 ∗ s. t. ෍

𝑖,𝑗 ∈Ω

𝑍𝑖𝑗 −𝑀𝑖𝑗 = 0 Iterative soft thresholding, i.e., SVT [4], 
APG [5], CGD [6]

Rank-constrained least 
squares

min
𝑍∈ℝ𝑛×𝑛

෍

𝑖,𝑗 ∈Ω

𝑍𝑖𝑗 −𝑀𝑖𝑗
2
s. t. 𝑟𝑎𝑛𝑘 𝑍 ≤ 𝑟 Iterative hard thresholding, i.e., SVP [7], 

NIHT [8], Accelerated IHT [9,10]

Low-rank factorization min
𝑋∈ℝ𝑛×𝑟

෍

𝑖,𝑗 ∈Ω

𝑋𝑋𝑇
𝑖𝑗 −𝑀𝑖𝑗

2
Gradient descent [11,12], projected 
gradient descent [13]
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Gradient Descent (GD) for SMCP

• SMCP as unconstrained non-convex optimization

min
𝑋∈ℝ𝑛×𝑟

1

4
𝑃Ω 𝑋𝑋𝑇 −𝑀 𝐹

2

𝑓(𝑋)

∇𝑓(𝑋𝑘) 6



Convergence Analysis of GD for SMCP

• Most focus on global guarantees
• Standard assumptions:

• 𝑀 is 𝜇-incoherent

• Ω is a uniform sampling

• (Ma et. al. ’s result [12]) If 𝑠 = 𝑂(𝜇3𝑟3𝑛 𝑙𝑜𝑔3𝑛), then w.h.p GD with spectral 
initialization converges globally at linear rate

𝜌 ≥ 1 −
2

125𝜅2

Large condition number 𝜅 implies a loose bound on the linear rate!
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Contribution

• We studies the local convergence of GD for SMCP

• We establish a deterministic condition on 𝑀 and Ω for 
linear convergence
• Do not require standard assumptions

• Do not require asymptotic regime

• We provide the exact linear rate in closed-form
• Tighter than the global bound in [12]

• Match well the convergence behavior in practice
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Preliminaries

• Rank-𝑟 eigendecomposition of 𝑀

𝑀 = 𝑈Σ𝑈𝑇

• Projection onto the null space of 𝑀

𝑃𝑈⊥ = 𝐼𝑛 − 𝑈𝑈𝑇

• Vectorization of the projection onto the tangent plane 
of the set of rank-𝑟 matrices at 𝑀

𝑃1 = 𝐼𝑛2 − 𝑃𝑈⊥⨂𝑃𝑈⊥

• Vectorization of the projection onto the set of 
symmetric matrices

𝑃2 =
𝐼𝑛2 + 𝑇𝑛2

2

• 𝑈 ∈ 𝑅𝑛×𝑟 is a semi-orthogonal matrix
• Σ ∈ 𝑅𝑟×𝑟 is a diagonal matrix

vec
𝐸 + 𝐸𝑇

2
= 𝑃2vec(𝐸)

vec 𝐸 − 𝑃𝑈⊥𝐸𝑃𝑈⊥ = 𝑃1vec(𝐸)

𝑃𝑟 𝑀 + 𝐸 −𝑀 = 𝐸 − 𝑃𝑈⊥𝐸𝑃𝑈⊥ + 𝑂 𝐸 𝐹
2

∇𝑃𝑟(𝑀) ∙ 𝐸
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A Recursion on the Error

• Recall the GD update

𝑋𝑘+1 = 𝑋𝑘 − 𝜂𝑃Ω 𝑋𝑘𝑋𝑘𝑇 −𝑀 𝑋𝑘

• Let 𝐸𝑘 = 𝑋𝑘𝑋𝑘𝑇 −𝑀 be the error matrix

⇒ 𝐸𝑘+1 = 𝐸𝑘 − 𝜂 𝑃Ω 𝐸𝑘 𝑀 +𝑀𝑃Ω 𝐸𝑘 + 𝑂 𝐸𝑘
𝐹

2

• Let 𝑒𝑘 = vec(𝐸𝑘) be the error vector

⇒ 𝑒𝑘+1 = 𝐼𝑛2 − 𝜂 𝑀⨁𝑀 𝑆𝑇𝑆 𝑒𝑘 + 𝑂 𝑒𝑘
2

2

𝑀⨁𝑀 = 𝑀⨂𝐼𝑛 + 𝐼𝑛⨂𝑀

𝑆 ∈ ℝ𝑠×𝑛2: ൝
𝑆𝑆𝑇 = 𝐼𝑠

𝑣𝑒𝑐 𝑃Ω 𝐸 = 𝑆𝑇𝑆𝑣𝑒𝑐(𝐸)𝐴 10



Convergence of Nonlinear Difference Equations

• Polyak’s result [14]:

• If 𝐴𝑘 ≤ 𝑐 𝜖 𝜌 + 𝜖 𝑘 for 𝜌 < 1 and any 𝜖 > 0, then for sufficiently small 𝑒0 :

𝑒𝑘 ≤ 𝐶(𝜖) 𝑒0 𝜌 + 𝜖 𝑘

• Vu and Raich’s result [15]:

• Let 𝜌 = 𝜌(𝐴) be the spectral radius of 𝐴. If 𝜌 < 1, then for sufficiently small 𝑒0 :

𝑒𝑘 ≤ 𝐾 𝜌, 𝑒0 𝑒0 𝜌𝑘

→ Can we apply the result directly to show the linear convergence of GD for SMCP?

𝑒𝑘+1 = 𝐴𝑒𝑘 + 𝑂 𝑒𝑘
2

2

Unfortunately, NO. Since 𝜌 𝐴 ≥ 1 ! 𝐴 = 𝐼𝑛2 − 𝜂 𝑀⨁𝑀 𝑆𝑇𝑆
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Structural Constraints on the Error

Structural properties of the error matrix

𝐸 = 𝑋𝑋𝑇 −𝑀

1. 𝐸 = 𝐸𝑇

2. 𝑃𝑟 𝑀 + 𝐸 = 𝑀 + 𝐸, 

• where 𝑃𝑟 is the projection onto the set of 

rank-𝑟 matrices

3. 𝑀 + 𝐸 is PSD

Structural properties of the error vector  

𝑒 = vec(𝐸) = vec(𝑋𝑋𝑇 −𝑀)

1. 𝑒 = 𝑃2𝑒

2. 𝑒 = 𝑃1𝑒 + 𝑂 𝑒 2
2

3. Negligible effect

⇒ 𝑒 = 𝑃1𝑃2𝑒 + 𝑂 𝑒 2
2

𝑃

𝑃1 = 𝐼𝑛2 − 𝑃𝑈⊥⨂𝑃𝑈⊥

𝑃2 =
𝐼
𝑛2
+𝑇

𝑛2

2

𝑒𝑘
𝑃𝐴𝑒𝑘

𝐴𝑒𝑘
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Determining the Linear Rate

• Integrating structural constraints

𝑒𝑘+1 = 𝑃𝐴𝑃𝑒𝑘 + 𝑂 𝑒𝑘
2

2

𝐻

𝑃 = 𝑃1𝑃2 = 𝐼𝑛2 − 𝑃𝑈⊥⨂𝑃𝑈⊥
𝐼
𝑛2
+𝑇

𝑛2

2

𝐻 = 𝑃 𝐼𝑛2 − 𝜂 𝑀⨁𝑀 𝑆𝑇𝑆 𝑃

Theorem

If 𝜌 𝐻 < 1, then there exists a neighborhood 𝒩(𝑀)

such that for any 𝑋0𝑋0𝑇 ∈ 𝒩(𝑀):
𝑒𝑘 ≤ 𝐶 𝑒0 𝜌 𝐻 𝑘

for some numerical constant 𝐶 > 0.
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Conclusions

• Local convergence analysis recovers the exact rate of linear 
convergence of GD for SMCP.

• Integrating structural constraints is the key to obtain the convergence 
rate for the nonlinear difference equation on the error.

• It is interesting to extend the analysis to the non-symmetric case and 
make connection to existing works on the global convergence.
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Thank you!

Check our full paper at https://arxiv.org/abs/2102.02396

Further results on local convergence analysis at https://trungvietvu.github.io/
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