2021
TORONTO.
Canadià
June 6-11, 2021
Metro Toronto Convention Centre

Exact Linear Convergence Rate Analysis for Low-Rank Symmetric Matrix Completion via Gradient Descent

Trung Vu and Raviv Raich

School of EECS, Oregon State University, Corvallis, OR 97331-5501, USA
vutru, raich@oregonstate.edu

Symmetric Matrix Completion Problem (SMCP)

1	$?$	$?$	1
$?$	$?$	6	$?$
$?$	6	$?$	2
1	$?$	2	1

- Positive semidefinite (PSD) rank-r matrix $M \in \mathbb{R}^{n \times n}$
- $M=X X^{T}$, where $X \in \mathbb{R}^{n \times r}$
- Sampling set Ω with cardinality S
- Ω is symmetric!

$$
\begin{array}{ll}
\text { find } & M_{i j} \text { for }(i, j) \in \Omega^{\mathrm{c}} \\
\text { given } & \operatorname{rank}(M) \leq r \\
\text { and } & M_{i j} \text { for }(i, j) \in \Omega
\end{array}
$$

$$
n=4, r=1, s=8
$$

Applications

- Maximum likelihood estimation (MLE) of covariance matrices in Gaussian graphical models [1]
- Density matrix completion in quantum state tomography [2]

- Low-rank approximation of correlation matrices in finance and risk management [3]

Schäfer, Juliane, and Korbinian Strimmer. "Learning Large-Scale Graphical Gaussian Models from Genomic Data." In AIP Conference Proceedings, vol. 776, no. 1, pp. 263-276. American Institute of Physics, 2005.

Rectangular Matrix Completion as SMCP

- Rectangular (non-symmetric) matrix completion
- $A \in \mathbb{R}^{n_{1} \times n_{2}}$ has rank r
- $A=Y Z^{T}$, where $Y \in \mathbb{R}^{n_{1} \times r}, Z \in \mathbb{R}^{n_{2} \times r}$
- $|\widetilde{\Omega}|=\tilde{s}$

$$
\begin{aligned}
& n_{1}=4, n_{2}=3 \\
& r=1, \tilde{s}=5
\end{aligned}
$$

- Semidefinite lifting
- $X=\left[\begin{array}{l}Y \\ Z\end{array}\right] \in \mathbb{R}^{n \times r}$, where $n=n_{1}+n_{2}$
- $M=X X^{T}=\left[\begin{array}{ll}Y Y^{T} & Y Z^{T} \\ Z Y^{T} & Z Z^{T}\end{array}\right] \in \mathbb{R}^{n \times n}$
- M also has rank r

$?$	$?$	$?$	$?$	4	$?$	$?$
$?$	$?$	$?$	$?$	$?$	$?$	4
$?$	$?$	$?$	$?$	$?$	2	$?$
$?$	$?$	$?$	$?$	4	$?$	4
4	$?$	$?$	4	$?$	$?$	$?$
$?$	$?$	2	$?$	$?$	$?$	$?$
$?$	4	$?$	4	$?$	$?$	$?$

$$
\begin{aligned}
& n=7 \\
& r=1, s=10
\end{aligned}
$$

Existing Approaches

Approach	Problem formulation	Existing algorithms		
Linearly-constrained nuclear norm minimization	$\min _{Z \in \mathbb{R}^{n \times n}}\\|Z\\|_{*}$ s.t. $\sum_{(i, j) \in \Omega}\left\|Z_{i j}-M_{i j}\right\|=0$	Iterative soft thresholding, i.e., SVT [4], APG [5], CGD [6]		
Rank-constrained least squares	$\min _{Z \in \mathbb{R}^{n \times n}} \sum_{(i, j) \in \Omega}\left(Z_{i j}-M_{i j}\right)^{2}$ s.t. $\operatorname{rank}(Z) \leq r$	Iterative hard thresholding, i.e., SVP [7], NIHT [8], Accelerated IHT [9,10]		
Low-rank factorization	$\min _{X \in \mathbb{R}^{n \times r}} \sum_{(i, j) \in \Omega}\left(\left(X X^{T}\right)_{i j}-M_{i j}\right)^{2}$	Gradient descent [11,12], projected gradient descent [13]		

Gradient Descent (GD) for SMCP

- SMCP as unconstrained non-convex optimization

$$
\min _{X \in \mathbb{R}^{n \times r}} \underbrace{}_{f(X)} \frac{1}{4}\left\|P_{\Omega}\left(X X^{T}-M\right)\right\|_{F}^{2} \quad\left[\mathcal{P}_{\Omega}(\boldsymbol{Z})\right]_{i j}= \begin{cases}Z_{i j} & \text { if }(i, j) \in \Omega, \\ 0 & \text { otherwise }\end{cases}
$$

```
Algorithm 1 (Non-convex) Gradient Descent
Input: \(\boldsymbol{X}^{0}, \mathcal{P}_{\Omega}(\boldsymbol{M}), \eta\)
Output: \(\left\{\boldsymbol{X}^{k}\right\}\)
    1: for \(k=0,1,2, \ldots\) do
    2: \(\quad \boldsymbol{X}^{k+1}=\boldsymbol{X}^{k}-\eta \mathcal{P}_{\Omega}\left(\boldsymbol{X}^{k} \boldsymbol{X}^{k^{\top}}-\boldsymbol{M}\right) \boldsymbol{X}^{k}\)
```

$$
\nabla f\left(X^{k}\right)
$$

Convergence Analysis of GD for SMCP

- Most focus on global guarantees
- Standard assumptions:
- M is μ-incoherent
- Ω is a uniform sampling
- (Ma et. al. 's result [12]) If $s=O\left(\mu^{3} r^{3} n \log ^{3} n\right)$, then w.h.p GD with spectral initialization converges globally at linear rate

$$
\rho \geq 1-\frac{2}{125 \kappa^{2}}
$$

Large condition number κ implies a loose bound on the linear rate!

Contribution

- We studies the local convergence of GD for SMCP
- We establish a deterministic condition on M and Ω for linear convergence
- Do not require standard assumptions
- Do not require asymptotic regime
- We provide the exact linear rate in closed-form
- Tighter than the global bound in [12]
- Match well the convergence behavior in practice

Preliminaries

- Rank-r eigendecomposition of M

$$
M=U \Sigma U^{T}
$$

- Projection onto the null space of M

$$
P_{U_{\perp}}=I_{n}-U U^{T}
$$

- Vectorization of the projection onto the tangent plane of the set of rank- r matrices at M

$$
P_{1}=I_{n^{2}}-P_{U_{\perp}} \otimes P_{U_{\perp}}
$$

$$
\begin{gathered}
P_{r}(M+E)-M=\underbrace{E-P_{U_{\perp}} E P_{U_{\perp}}}_{\nabla P_{r}(M) \cdot E}+O\left(\|E\|_{F}^{2}\right) \\
\operatorname{vec}\left(E-P_{U_{\perp}} E P_{U_{\perp}}\right)=P_{1} \operatorname{vec}(E)
\end{gathered}
$$

- Vectorization of the projection onto the set of symmetric matrices

$$
P_{2}=\frac{I_{n^{2}}+T_{n^{2}}}{2}
$$

$$
\operatorname{vec}\left(\frac{E+E^{T}}{2}\right)=P_{2} \operatorname{vec}(E)
$$

A Recursion on the Error

- Recall the GD update

$$
X^{k+1}=X^{k}-\eta P_{\Omega}\left(X^{k} X^{k^{T}}-M\right) X^{k}
$$

- Let $E^{k}=X^{k} X^{k^{T}}-M$ be the error matrix

$$
\Rightarrow E^{k+1}=E^{k}-\eta\left(P_{\Omega}\left(E^{k}\right) M+M P_{\Omega}\left(E^{k}\right)\right)+O\left(\left\|E^{k}\right\|_{F}^{2}\right)
$$

- Let $e^{k}=\operatorname{vec}\left(E^{k}\right)$ be the error vector

$$
\Rightarrow e^{k+1}=\underbrace{\left(I_{n^{2}}-\eta(M \oplus M) S^{T} S\right)}_{A} e^{k}+O\left(\left\|e^{k}\right\|_{2}^{2}\right)
$$

Convergence of Nonlinear Difference Equations

$$
e^{k+1}=A e^{k}+O\left(\left\|e^{k}\right\|_{2}^{2}\right)
$$

- Polyak's result [14]:
- If $\left\|A^{k}\right\| \leq c(\epsilon)(\rho+\epsilon)^{k}$ for $\rho<1$ and any $\epsilon>0$, then for sufficiently small $\left\|e^{0}\right\|$:

$$
\left\|e^{k}\right\| \leq C(\epsilon)\left\|e^{0}\right\|(\rho+\epsilon)^{k}
$$

- Vu and Raich's result [15]:
- Let $\rho=\rho(A)$ be the spectral radius of A. If $\rho<1$, then for sufficiently small $\left\|e^{0}\right\|$:

$$
\left\|e^{k}\right\| \leq K\left(\rho,\left\|e^{0}\right\|\right)\left\|e^{0}\right\| \rho^{k}
$$

\rightarrow Can we apply the result directly to show the linear convergence of GD for SMCP?

Structural Constraints on the Error

Structural properties of the error matrix

$$
E=X X^{T}-M
$$

1. $E=E^{T}$
2. $\quad P_{r}(M+E)=M+E$,

- where P_{r} is the projection onto the set of
rank- r matrices

3. $M+E$ is PSD

Structural properties of the error vector

$$
e=\operatorname{vec}(E)=\operatorname{vec}\left(X X^{T}-M\right)
$$

1. $e=P_{2} e$
2. $e=P_{1} e+O\left(\|e\|_{2}^{2}\right)$
3. Negligible effect
$\Rightarrow e=P_{1} P_{2} e+O\left(\|e\|_{2}^{2}\right)$
P

Feasible space of e^{k}

$$
\begin{aligned}
& P_{1}=I_{n^{2}}-P_{U_{\perp}} \otimes P_{U_{\perp}} \\
& P_{2}=\frac{I_{n^{2}}+T_{n^{2}}}{2}
\end{aligned}
$$

Determining the Linear Rate

- Integrating structural constraints

$$
e^{k+1}=\underbrace{P A P}_{H} e^{k}+O\left(\left\|e^{k}\right\|_{2}^{2}\right)
$$

Theorem

If $\rho(H)<1$, then there exists a neighborhood $\mathcal{N}(M)$ such that for any $X^{0} X^{0^{T}} \in \mathcal{N}(M)$:

$$
\left\|e^{k}\right\| \leq C\left\|e^{0}\right\| \rho(H)^{k}
$$

for some numerical constant $C>0$.

$$
\begin{aligned}
& P=P_{1} P_{2}=\left(I_{n^{2}}-P_{U_{\perp}} \otimes P_{U_{\perp}}\right) \frac{I^{2}+T}{2} \\
& H=P\left(I_{n^{2}}-\eta(M \oplus M) S^{T} S\right) P
\end{aligned}
$$

Conclusions

- Local convergence analysis recovers the exact rate of linear convergence of GD for SMCP.
- Integrating structural constraints is the key to obtain the convergence rate for the nonlinear difference equation on the error.
- It is interesting to extend the analysis to the non-symmetric case and make connection to existing works on the global convergence.

References

5. Kim-Chuan Toh and Sangwoon Yun, "An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems," Pacific Journal of Optimization, vol. 6, no. 615-640, pp. 15, 2010.
6. Trung Vu and Raviv Raich, "Local convergence of the Heavy Ball method in iterative hard thresholding for low-rank matrix completion," in IEEE International Conference on Acoustics, Speech and Signal Processing, 2019, pp. 3417-3421.
7. Cong Ma, Kaizheng Wang, Yuejie Chi, and Yuxin Chen, "Implicit regularization in nonconvex statistical estimation: Gradient descent converges linearly for phase retrieval and matrix completion," in Proceedings of the International Conference on Machine Learning. PMLR, 2018, pp. 3345-3354.
8. Yudong Chen and Martin J Wainwright, "Fast low-rank estimation by projected gradient descent: General statistical and algorithmic guarantees," arXiv preprint arXiv:1509.03025, 2015.

Boris T. Polyak, "Some methods of speeding up the convergence of iteration methods," USSR Computational Mathematics and Mathematical Physics, vol. 4, no. 5, pp. 1-17, 1964

Thank you!

Check our full paper at https://arxiv.org/abs/2102.02396
Further results on local convergence analysis at https://trungvietvu.github.io/

